Implementation of Model to Analyse the Performance of Microturbine as in Microgrid Comparison with Fuel Cell

Author:

Roy Subhajit1

Affiliation:

1. Dr. B.C. Roy Engineering College, Durgapur, India

Abstract

As it is known Microgrid is a miniature grid consist of one or more numbers of same or by different conventional or non-conventional generation sources. Here one can consider Microturbine (MT) as the main source of generation and it may or may not be connected with the main grid. The author discussed modeling of different types of Micro turbine during implementation of mathematical modeling of split-shaft type with the help of MATLAB® Simulink®. From developed models can be describe behavior of a MicroGrid (MG) under islanded mode as MT and SOFC as the sources. SOFC can change its electrical output power (30%) high or low, but take more time to response than MT (2-3 times more). It is demonstrated that Microturbines and fuel-cells are capable of providing a load-following service in the distributed generation system. Results prove the effectiveness of the two developed models in the studying and analysis of the transient dynamic response of MG.

Publisher

IGI Global

Subject

General Medicine,General Chemistry

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance of Microturbine as in Microgrid Comparison With Fuel Cell;Advances in Environmental Engineering and Green Technologies;2024-01-26

2. Enhancing Fault Identification in Modern Day Transmission Lines through Neural Network Approach;2023 7th International Conference on Electronics, Materials Engineering & Nano-Technology (IEMENTech);2023-12-18

3. Predictive Modelling and Simulation of Vehicle-to-Grid Systems Using Hidden Markov Algorithm and Microgrid Integration;2023 International Conference on IoT, Communication and Automation Technology (ICICAT);2023-06-23

4. Transient simulation of a tubular micro-solid oxide fuel cell;Journal of Power Sources;2018-12

5. Multi-Input Single-Output State Space for Hybrid Power System Approach Using PEMFC;International Journal of Energy Optimization and Engineering;2017-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3