Automatic Generation Control of Interconnected Power System using Cuckoo Optimization Algorithm

Author:

Laik Shanchari1,Dey Shatabdi1,Das Puja2,Sultana Sneha3,Paul Sourav3,Roy Provas Kumar4

Affiliation:

1. Department of Electrical Engineering, Bengal College of Engineering and Technology for Women, Durgapur, India

2. Department of Electrical Engineering, Dr. B. C. Roy Engineering College, Durgapur, India

3. Department of Electrical Engineering, Dr. B.C. Roy Engineering College, Durgapur, India

4. Department of Electrical Engineering, Jalpaiguri Government Engineering College, Jalpaiguri, India

Abstract

Automatic generation control (AGC) is added in power system to ensure constancy in frequency and tie-line power of an interconnected multi-area power system. In this article, proportional integral (PI) controlled based AGC of two-area hydrothermal system is solved by cuckoo optimization algorithm (COA). It is one of the most powerful stochastic real parameter optimization in current use. The design objective is to improve the dynamic performance of the interconnected system following a disturbance. System performance is examined considering 1% step load perturbation in thermal area with generation rate constraints. The results are compared with BBO, GA and DE to show the effectiveness of the proposed method. Computed results shows that the proposed method effectively improve the performance of the objective function with corresponding minimization of the overshoot, undershoot and settling time to reach steady state.

Publisher

IGI Global

Subject

General Medicine,General Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sooty Tern Optimization Algorithm for Solving the Multi-Objective Dynamic Economic Emission Dispatch Problem;International Journal of Swarm Intelligence Research;2022-09-16

2. Grey Wolf Optimization to Solve Load Frequency Control of an Interconnected Power System;International Journal of Energy Optimization and Engineering;2016-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3