Energy-Efficient Cloud-Integrated Sensor Network Model Based on Data Forecasting Through ARIMA

Author:

Das Kalyan1ORCID,Das Satyabrata1ORCID

Affiliation:

1. Department of Computer Science and Engineering, Veer Surendra Sai University of Technology, Burla, India

Abstract

An energy-efficient Model for Sensor-cloud is proposed based on data forecasting through an autoregressive integrated moving average (ARIMA). Generally, all the user requests are redirected to the wireless sensor network (WSN) through the cloud. In the traditional approach, user requests are generated every fifteen minutes, so the sensor must send data to the cloud every fifteen minutes. In the current approach, the sensors within the WSN communicate with the cloud every two hours. The data forecasting technique addresses most of the user requests using the ARIMA one-step ahead forecasting model in the cloud. This results in less frequency of data communication, thereby increasing the battery life of the sensor. The ARIMA-based forecasting model provides better accuracy because of fewer temperature data changes with respect to the current temperature, for the next two hours. The proposed method for the simulation in the sensor cloud system consumes significantly less energy than the traditional approach, and the error in forecasting becomes highly negligible.

Publisher

IGI Global

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forecasting PM2.5 Concentration Using Gradient-Boosted Regression Tree with CNN Learning Model;Optical Memory and Neural Networks;2024-03

2. Stock Price Volatility Prediction in Financial Big Data on XGBoost and ARIMA Models;2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE);2023-11-02

3. E-Collaboration for Management Information Systems Using Deep Learning Technique;Advances in Social Networking and Online Communities;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3