CustNER

Author:

Mumtaz Raabia1ORCID,Qadir Muhammad Abdul1

Affiliation:

1. Department of Computer Science, Capital University of Science and Technology, Islamabad, Pakistan

Abstract

This article describes CustNER: a system for named-entity recognition (NER) of person, location, and organization. Realizing the incorrect annotations of existing NER, four categories of false negatives have been identified. The NEs not annotated contain nationalities, have corresponding resource in DBpedia, are acronyms of other NEs. A rule-based system, CustNER, has been proposed that utilizes existing NERs and DBpedia knowledge base. CustNER has been trained on the open knowledge extraction (OKE) challenge 2017 dataset and evaluated on OKE and CoNLL03 (Conference on Natural Language Learning) datasets. The OKE dataset has also been annotated with the three types. Evaluation results show that CustNER outperforms existing NERs with F score 12.4% better than Stanford NER and 3.1% better than Illinois NER. On another standard evaluation dataset for which the system is not trained, the CoNLL03 dataset, CustNER gives results comparable to existing systems with F score 3.9% better than Stanford NER, though Illinois NER F score is 1.3% better than CustNER.

Publisher

IGI Global

Subject

Computer Networks and Communications,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Named entity recognition of rice genes and phenotypes based on BiGRU neural networks;Computational Biology and Chemistry;2024-02

2. A novel Cumulative Indicator score using Indicator averaging for optimizing local business websites of enterprise systems;Enterprise Information Systems;2024-01-17

3. A Chinese BERT-Based Dual-Channel Named Entity Recognition Method for Solid Rocket Engines;Electronics;2023-02-02

4. Knowledge Retrieval and Relation Mining from Tolkien’s History of Middle Earth;2022 IEEE 22nd International Symposium on Computational Intelligence and Informatics and 8th IEEE International Conference on Recent Achievements in Mechatronics, Automation, Computer Science and Robotics (CINTI-MACRo);2022-11-21

5. A Novel CNN, Bidirectional Long-Short Term Memory, and Gated Recurrent Unit-Based Hybrid Approach for Human Activity Recognition;International Journal of Software Science and Computational Intelligence;2022-10-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3