Affiliation:
1. University of Jeddah, Saudi Arabia
2. Jazan University, Saudi Arabia
Abstract
People are afraid about COVID-19 and are actively talking about it on social media platforms such as Twitter. People are showing their emotions openly in their tweets on Twitter. It's very important to perform sentiment analysis on these tweets for finding COVID-19's impact on people's lives. Natural language processing, textual processing, computational linguists, and biometrics are applied to perform sentiment analysis to identify and extract the emotions. In this work, sentiment analysis is carried out on a large Twitter dataset of English tweets. Ten emotional themes are investigated. Experimental results show that COVID-19 has spread fear/anxiety, gratitude, happiness and hope, and other mixed emotions among people for different reasons. Specifically, it is observed that positive news from top officials like Trump of chloroquine as cure to COVID-19 has suddenly lowered fear in sentiment, and happiness, gratitude, and hope started to rise. But, once FDA said, chloroquine is not effective cure, fear again started to rise.
Subject
Computer Networks and Communications,Information Systems
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献