Metamorphic Testing of Image Classification and Consistency Analysis Using Clustering

Author:

Gudaparthi Hemanth1,Naidu Prudhviraj1,Niu Nan1

Affiliation:

1. University of Cincinnati, USA

Abstract

Testing deep learning systems requires expensive labeled data. In recent years, researchers began to leverage metamorphic testing to address this issue. However, metamorphic relations on image data remain poorly understood. To gain a deeper understanding of these metamorphic relations, we survey common image operations modeling covariate shift, manually classify and categorize the underlying metamorphic relations, and conduct experiments to validate our classifications. In our experiments, we train three popular convolutional neural network architectures on an image classification task. Next, we apply metamorphic operations on input test images and measure the change in classification accuracy and cross-entropy loss. A hierarchical clustering algorithm cluster these results and plots a dendrogram. We compare the groups from manual classification and the clusters from the algorithm to provide key insights. We find that Affine and Noise relations are consistent. Furthermore, we recommend metamorphic relationships to save time and better test deep learning systems in the future.

Publisher

IGI Global

Subject

General Engineering

Reference55 articles.

1. SysML modeling mistakes and their impacts on requirements;M.Alenazi;Proceedings of the International Model-Driven Requirements Engineering Workshop (MoDRE),2019

2. Requirements engineering for software product lines: A systematic literature review;V.Alves;Information and Software Technology,2010

3. Learning long-term dependencies with gradient descent is difficult

4. Bhageshpur, K. (2019). Data Is The New Oil: And That’s A Good Thing.https://www.forbes.com/sites/forbestechcouncil/2019/11/15/data-is-the-new-oil-and-thats-a-good-thing/?sh=5d3465777304

5. Bojarski, M., Testa, D. D., Dworakowski, D., Firner, B., Flepp, B., Goyal, P., Jackel, L. D., Monfort, M., Muller, U., Zhang, J., Zhang, X., Zhao, J., & Zieba, K. (2016). End to end learning for self-driving cars.https://arxiv.org/abs/1604.07316

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3