Adaptive Acquisition and Visualization of Point Cloud Using Airborne LIDAR and Game Engine

Author:

Huang Chengxuan1,Brock Evan2,Wu Dalei2ORCID,Liang Yu2ORCID

Affiliation:

1. University of California, Davis, USA

2. University of Tennessee at Chattanooga, USA

Abstract

The development of digital twin for smart city applications requires real-time monitoring and mapping of urban environments. This work develops a framework of real-time urban mapping using an airborne light detection and ranging (LIDAR) agent and game engine. In order to improve the accuracy and efficiency of data acquisition and utilization, the framework is focused on the following aspects: (1) an optimal navigation strategy using Deep Q-Network (DQN) reinforcement learning, (2) multi-streamed game engines employed in visualizing data of urban environment and training the deep-learning-enabled data acquisition platform, (3) dynamic mesh used to formulate and analyze the captured point-cloud, and (4) a quantitative error analysis for points generated with our experimental aerial mapping platform, and an accuracy analysis of post-processing. Experimental results show that the proposed DQN-enabled navigation strategy, rendering algorithm, and post-processing could enable a game engine to efficiently generate a highly accurate digital twin of an urban environment.

Publisher

IGI Global

Subject

General Engineering

Reference23 articles.

1. PCE-SLAM: A real-time simultaneous localization and mapping using LiDAR data

2. Andrews, C. (2020). Gamification in GIS and AEC. Retrieved from https://www.esri.com/arcgis-blog/products/arcgis/3d-gis/gamification-in-gis-and-aec/

3. Brock, E., Clark, S., Wu, D., & Liang, Y. (2022a). Technical report - collected point cloud with kalman filter. Retrieved from https://drive.google.com/file/d/17qLu0KvosD33C3JK2vpVurjePRXtJ-pi/view?usp=sharing

4. Brock, E., Clark, S., Wu, D., & Liang, Y. (2022b). Technical report - collected point cloud without kalman filter. Retrieved from https://drive.google.com/file/d/1OORt IRIISLdaIzXL0xne4G3odQqIbW1/view?usp=sharing

5. CGAL. (2020). CGAL User and Reference Manual. Retrieved from https://doc.cgal.org/Manual/

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3