Application of E-Commerce Recommendation Algorithm in Consumer Preference Prediction

Author:

Wang Wei1

Affiliation:

1. School of Economics and Trade, Anhui Business and Technology College, China

Abstract

Through user characteristic information, user interaction behavior, commodity characteristic information, recommendation engine, and related technologies in data mining, this paper makes a more in-depth study, and analyzes the problems of "big data volume", "cold start" and "data sparsity" in the recommender system in modern business websites. In response to these problems, this paper transforms the problem of large data volume into the problem of large user groups. Then, after using the k-means clustering algorithm to divide the large user group into homogeneous user groups to alleviate the problem, a combination of collaborative filtering algorithm and content-based recommendation algorithm in the homogeneous user group is proposed to alleviate this problem. The experimental precision and recall are both around 0.4, and when W=0.8, the F value is the largest.

Publisher

IGI Global

Subject

Information Systems and Management,Strategy and Management,Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Prediction of User Behavior in International Trade E-commerce: Application of LSTM Algorithm;2024 International Conference on Machine Intelligence and Digital Applications;2024-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3