Affiliation:
1. Thiagarajar College of Engineering, Madurai, India
2. National Institute of Technology, Andhra Pradesh, Tadepalligudem, India
Abstract
Pure air is vital for sustaining human life. Air pollution causes long-term effects on people. There is an urgent need for protecting people from its profound effects. In general, people are unaware of the levels to which they are exposed to air pollutants. Vehicles, burning various kinds of waste, and industrial gases are the top three onset agents of air pollution. Of these three top agents, human beings are exposed frequently to the pollutants due to motor vehicles. To aid in protecting people from vehicular air pollutants, this article proposes a framework that utilizes deep learning models. The framework utilizes a deep belief network to predict the levels of air pollutants along the paths people travel and also a comparison with the predictions made by a feed forward neural network and an extreme learning machine. When evaluating the deep belief neural network for the case study undertaken, a deep belief network was able to achieve a higher index of agreement and lower RMSE values.
Subject
Decision Sciences (miscellaneous),Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Air pollution forecasting based on wireless communications: review;Environmental Monitoring and Assessment;2023-09-05
2. Deep Learning Techniques for Air Pollution;2021 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS);2021-02-19