Genre Familiarity Correlation-Based Recommender Algorithm for New User Cold Start Problem

Author:

Sharon Moses J. 1,Dhinesh Babu L. D. 2

Affiliation:

1. Fanlytiks, India

2. VIT University, India

Abstract

The advancement of web services paved the way to the accumulation of a tremendous amount of information into the world wide web. The huge pile of information makes it hard for the user to get the required information at the right time. Therefore, to get the right item, recommender systems are emphasized. Recommender algorithms generally act on the user information to render recommendations. In this scenario, when a new user enters the system, it fails in rendering recommendation due to unavailability of user information, resulting in a new user problem. So, in this paper, a movie recommender algorithm is constructed to address the prevailing new user cold start problem by utilizing only movie genres. Unlike other techniques, in the proposed work, familiarity of each movie genre is considered to compute the genre significance value. Based on genre significance value, genre similarity is correlated to render recommendations to a new user. The evaluation of the proposed recommender algorithm on real-world datasets shows that the algorithm performs better than the other similar approaches.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3