An Ontology Based Framework for Intelligent Web Based e-Learning

Author:

Senthilnayaki B.1,Venkatalakshmi K.2,Kannan A.1

Affiliation:

1. Department of Information Science and Technology, Anna University, Chennai, India

2. Department of Electronic and Communication Engineering, Anna University, Chennai, India

Abstract

E-Learning is a fast, just-in-time, and non-linear learning process, which is now widely applied in distributed and dynamic environments such as the World Wide Web. Ontology plays an important role in capturing and disseminating the real world knowledge for effective human computer interactions. However, engineering of domain ontologies is very labor intensive and time consuming. Some machine learning methods have been explored for automatic or semi-automatic discovery of domain ontologies. Nevertheless, both the accuracy and the computational efficiency of these methods need to be improved. While constructing large scale ontology for real-world applications such as e-learning, the ability to monitor the progress of students' learning performance is a critical issue. In this paper, a system is proposed for analyzing students' knowledge level obtained using Kolb's classification based on the students level of understanding and their learning style using cluster analysis. This system uses fuzzy logic and clustering algorithms to arrange their documents according to the level of their performance. Moreover, a new domain ontology discovery method is proposed uses contextual information of the knowledge sources from the e-Learning domain. This proposed system constructs ontology to provide an effective assistance in e-Learning. The proposed ontology discovery method has been empirically tested in an e-Learning environment for teaching the subject Database Management Systems. The salient contributions of this paper are the use of Jaccard Similarity measure and K-Means clustering algorithm for clustering of learners and the use of ontology for concept understanding and learning style identification. This helps in adaptive e-learning by providing suitable suggestions for decision making and it uses decision rules for providing intelligent e-Learning.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Ontology Development in the e-Learning Domain: Methods, Roles, Evaluation;2023 International Conference on Computer, Control, Informatics and its Applications (IC3INA);2023-10-04

2. A systematic literature review on adaptive content recommenders in personalized learning environments from 2015 to 2020;Journal of Computers in Education;2021-08-11

3. Review and classification of content recommenders in E-learning environment;Journal of King Saud University - Computer and Information Sciences;2021-07

4. An ontology-based hybrid e-learning content recommender system for alleviating the cold-start problem;Education and Information Technologies;2021-03-30

5. Animations about Clinical Trial Participation for Cancer Patients and Survivors;Journal of Health Communication;2019-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3