Affiliation:
1. Lebanese University, Lebanon
Abstract
The healthcare environment is generally perceived as being information rich yet knowledge poor. The healthcare industry collects huge amounts of healthcare data which, unfortunately, are not “mined” to discover hidden information. However, there is a lack of effective analysis tools to discover hidden relationships and trends in data. The information technology may provide alternative approaches to Osteoporosis disease diagnosis. This study examines the potential use of classification techniques on a massive volume of healthcare data, particularly in prediction of patients that may have Osteoporosis Disease (OD) through its risk factors. The paper proposes to develop a dynamic rough sets solution approach in order to generate dynamic reduced subsets of features associated with a classification model using Random Forest (RF) decision tree to identify the osteoporosis cases. There has been no research in using the afore-mentioned algorithm for Osteoporosis patients’ prediction. The reduction of the attributes consists of enumerating dynamically the optimal subsets of the most relevant attributes by reducing the degree of complexity. An intelligent decision support system is developed for this purpose. The study population consisted of 2845 adults. The performance of the proposed model is analyzed and evaluated based on a set of benchmark techniques applied in this classification problem.
Subject
Decision Sciences (miscellaneous),Information Systems
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献