Affiliation:
1. School of Computer Science and Technology, University of Science and Technology of China, Hefei, China
Abstract
Social network partitioning has become a very important function. One objective for partitioning is to identify interested communities to target for marketing and advertising activities. The bottleneck to detection of these communities is the large scalability of the social network. Previous methods did not effectively address the problem because they considered the overall network. Social networks have strong locality, so designing a local algorithm to find an interested community to address this objective is necessary. In this paper, we develop a local partition algorithm, named, Personalized PageRank Partitioning, to identify the community. We compute the conductance of the social network with a Personalized PageRank and Markov chain stationary distribution of the social network, and then sweep the conductance to find the smallest cut. The efficiency of the cut can reach. In order to detect a larger scale social network, we design and implement the algorithm on a MapReduce-programming framework. Finally, we execute our experiment on several actual social network data sets and compare our method to others. The experimental results show that our algorithm is feasible and very effective.
Subject
Decision Sciences (miscellaneous),Information Systems
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献