Functional Link Neural Network with Modified Artificial Bee Colony for Data Classification

Author:

Herawan Tutut1,Hassim Yana Mazwin Mohmad2,Ghazali Rozaida2

Affiliation:

1. Technology University of Yogyakarta, Yogyakarta, Indonesia

2. Tun Hussein Onn University of Malaysia, Faculty of Computer Science and Information Technology, Batu Pahat, Malaysia

Abstract

Functional Link Neural Network (FLNN) has emerged as an important tool for solving non-linear classification problem and has been successfully applied in many engineering and scientific problems. The FLNN structure is much more modest than ordinary feed forward network like the Multilayer Perceptron (MLP) due to its flat network architecture which employs less tuneable weights for training. However, the standard Backpropagation (BP) learning uses for FLNN training prone to get trap in local minima which affect the FLNN classification performance. To recover the BP-learning drawback, this paper proposes an Artificial Bee Colony (ABC) optimization with modification on bee foraging behaviour (mABC) as an alternative learning scheme for FLNN. This is motivated by good exploration and exploitation capabilities of searching optimal weight parameters exhibit by ABC algorithm. The result of the classification accuracy made by FLNN with mABC (FLNN-mABC) is compared with the original FLNN architecture with standard Backpropagation (BP) (FLNN-BP) and standard ABC algorithm (FLNN-ABC). The FLNN-mABC algorithm provides better learning scheme for the FLNN network with average overall improvement of 4.29% as compared to FLNN-BP and FLNN-ABC.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Task scheduling techniques in cloud computing: A literature survey;Future Generation Computer Systems;2019-02

2. Team orienteering problem with time windows and time-dependent scores;Computers & Industrial Engineering;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3