Recognition of Chemical Entities using Pattern Matching and Functional Group Classification

Author:

Hema R.1,Geetha T. V.1

Affiliation:

1. Anna University, Chennai, India

Abstract

The two main challenges in chemical entity recognition are: (i) New chemical compounds are constantly being synthesized infinitely. (ii) High ambiguity in chemical representation in which a chemical entity is being described by different nomenclatures. Therefore, the identification and maintenance of chemical terminologies is a tough task. Since most of the existing text mining methods followed the term-based approaches, the problems of polysemy and synonymy came into the picture. So, a Named Entity Recognition (NER) system based on pattern matching in chemical domain is developed to extract the chemical entities from chemical documents. The Tf-idf and PMI association measures are used to filter out the non-chemical terms. The F-score of 92.19% is achieved for chemical NER. This proposed method is compared with the baseline method and other existing approaches. As the final step, the filtered chemical entities are classified into sixteen functional groups. The classification is done using SVM One against All multiclass classification approach and achieved the accuracy of 87%. One-way ANOVA is used to test the quality of pattern matching method with the other existing chemical NER methods.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Word Sense Based Hindi-Tamil Statistical Machine Translation;Natural Language Processing;2020

2. Identification of new disease genes from protein–protein interaction network;Journal of Ambient Intelligence and Humanized Computing;2018-04-05

3. Word Sense Based Hindi-Tamil Statistical Machine Translation;International Journal of Intelligent Information Technologies;2018-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3