Text Clustering Using PSO Based Dynamic Adaptive SOM for Detecting Emergent Trends

Author:

Chandrakala D 1,Sumathi S 2,Saran Kumar A 3,Sathish J 4

Affiliation:

1. Department of Computer Science and Engineering, Kumaraguru College of Technology, Coimbatore, India

2. Department of Electrical and Electronics Engineering, PSG College of Technology, Coimbatore, India

3. Department of Computer Science and Engineering, Bannari Amman Institute of Technology, Sathyamangalam, India

4. Senior Software Engineer, Capgemini, India

Abstract

Detection and realization of new trends from corpus are achieved through Emergent Trend Detection (ETD) methods, which is a principal application of text mining. This article discusses the influence of the Particle Swarm Optimization (PSO) on Dynamic Adaptive Self Organizing Maps (DASOM) in the design of an efficient ETD scheme by optimizing the neural parameters of the network. This hybrid machine learning scheme is designed to accomplish maximum accuracy with minimum computational time. The efficiency and scalability of the proposed scheme is analyzed and compared with standard algorithms such as SOM, DASOM and Linear Regression analysis. The system is trained and tested on DBLP database, University of Trier, Germany. The superiority of hybrid DASOM algorithm over the well-known algorithms in handling high dimensional large-scale data to detect emergent trends from the corpus is established in this article.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Discovering emerging topics in textual corpora of galleries, libraries, archives, and museums institutions;Journal of the Association for Information Science and Technology;2021-10-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3