Abstract
In this paper, we deal with multimodal biometric systems based on palmprint recognition. In this regard, several palmprint-based approaches have been already proposed. Although these approaches show interesting results, they have some limitations in terms of recognition rate, running time and storage space. To fill this gap, we propose a novel multimodal biometric system combining left and right palmprints. For building this multimodal system, two compact local descriptors for feature extraction are proposed, fusion of left and right palmprints is performed at feature-level, and feature selection using evolutionary algorithms is introduced. To validate our proposal, we conduct intensive experiments related to performance and running time aspects. The obtained results show that our proposal shows significant improvements in terms of recognition rate, running time and storage space. Also, the comparison with other works shows that the proposed system outperforms some literature approaches and comparable with others.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献