Strategies for Document Management

Author:

Corral Karen1,Schuff David2,Schymik Gregory3,St. Louis Robert3

Affiliation:

1. Boise State University, USA

2. Temple University, USA

3. Arizona State University, USA

Abstract

Keyword search has failed to adequately meet the needs of enterprise users. This is largely due to the size of document stores, the distribution of word frequencies, and the indeterminate nature of languages. The authors argue a different approach needs to be taken, and draw on the successes of dimensional data modeling and subject indexing to propose a solution. They test our solution by performing search queries on a large research database. By incorporating readily available subject indexes into the search process, they obtain order of magnitude improvements in the performance of search queries. Their performance measure is the ratio of the number of documents returned without using subject indexes to the number of documents returned when subject indexes are used. The authors explain why the observed tenfold improvement in search performance on our research database can be expected to occur for searches on a wide variety of enterprise document stores.

Publisher

IGI Global

Subject

Information Systems and Management,Statistics, Probability and Uncertainty,Management Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Benefits and Costs of Using Metadata to Improve Enterprise Document Search;Decision Sciences;2015-09-23

2. Linking and Organizing Decision Information Object-oriented Promote Using Different DSS Technologies;FRONT ARTIF INTEL AP;2014

3. Managing Data and Information Quality in Outbound Transportation Systems;International Journal of Business Intelligence Research;2012-01

4. Business Intelligence 2.0;International Journal of Business Intelligence Research;2010-10

5. Business Intelligence 2.0;Organizational Applications of Business Intelligence Management

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3