Classification of Parkinson's Disease Using Motor and Non-Motor Biomarkers Through Machine Learning Techniques

Author:

Cingireddy Anirudh Reddy1,Ghosh Robin1,Melapu Venkata Kiran1,Joginipelli Sravanthi1,Kwembe Tor A.1

Affiliation:

1. Jackson State University, USA

Abstract

Parkinson's disease (PD) is the second most neurodegenerative disease in the United States of America after Alzheimer's disease. The Parkinson's disease patients and scans without evidence for dopaminergic deficit (SWEDD) patients will share the same symptoms, and It's hard to differentiate the PD, SWEDD patients, and healthy controls in the progression of PD. In this research, we classified PD patients, SWEDD patients, and healthy controls by considering motor and non-motor biomarkers, namely MDS-UPDRS part 1, SCOPA score, and QUIP-RS from the PPMI database by using supervised and unsupervised machine learning algorithms, namely Knn, logistic regression, XGBooting, naive Bayes, Decision tree, Random Forest, Support vector machine, multilayer perceptron , and K-means clustering, respectively. Random Forest scored 0.98 percent accuracy among all these algorithms and can identify and differentiate PD, SWEDD, and Healthy controls patients by motor and non-motor biomarkers.

Publisher

IGI Global

Subject

Geriatrics and Gerontology

Reference27 articles.

1. Applications of the European Parkinson’s Disease Association sponsored Parkinson’s Disease Composite Scale (PDCS)

2. Analysis of a Random Forests Model.;G.Biau;Journal of Machine Learning Research,2010

3. Bostantjopoulou, S., Katsarou, Z., Danglis, I., Karakasis, H., Milioni, D., & Falup-Pecurariu, C. (2016). Self-reported autonomic symptoms in Parkinson’s disease: Properties of the SCOPA-AUT scale. Hippokratia, 20(2), 115–120. Retrieved from /pmc/articles/PMC5388511/

4. XGBoost

5. Preliminary Screening of COVID-19 Infection Employing Machine Learning Techniques From Simple Blood Profile

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Data Science Approach to Precision Medicine: Allostatic Load as a Predictor of Cardiovascular Disease;2023 7th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT);2023-10-26

2. Emergency Care Patient Prediction using Electronic Health Records (EHR) Data: An End-to-End Machine Learning Pipeline;2023 10th International Conference on Future Internet of Things and Cloud (FiCloud);2023-08-14

3. Artificial Intelligence Applications for Assessment, Monitoring, and Management of Parkinson Disease Symptoms: Protocol for a Systematic Review;JMIR Research Protocols;2023-06-14

4. Optimised CNN based Brain Tumour Detection and 3D Reconstruction;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2022-09-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3