Strategies of Virtual Screening in Medicinal Chemistry

Author:

Passeri Giovanna Ilaria1,Trisciuzzi Daniela2,Alberga Domenico2,Siragusa Lydia1,Leonetti Francesco2,Mangiatordi Giuseppe F.2,Nicolotti Orazio3

Affiliation:

1. Molecular Discovery Ltd., Pinner, Middlesex, London, United Kingdom

2. Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari “Aldo Moro”, Bari, Italy

3. University of Bari, Bari, Italy

Abstract

Virtual screening represents an effective computational strategy to rise-up the chances of finding new bioactive compounds by accelerating the time needed to move from an initial intuition to market. Classically, the most pursued approaches rely on ligand- and structure-based studies, the former employed when structural data information about the target is missing while the latter employed when X-ray/NMR solved or homology models are instead available for the target. The authors will focus on the most advanced techniques applied in this area. In particular, they will survey the key concepts of virtual screening by discussing how to properly select chemical libraries, how to make database curation, how to applying and- and structure-based techniques, how to wisely use post-processing methods. Emphasis will be also given to the most meaningful databases used in VS protocols. For the ease of discussion several examples will be presented.

Publisher

IGI Global

Subject

Geriatrics and Gerontology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meet the Editorial Board Member;Mini-Reviews in Medicinal Chemistry;2024-02

2. An Integrated Machine Learning Model To Spot Peptide Binding Pockets in 3D Protein Screening;Journal of Chemical Information and Modeling;2022-11-02

3. Classification of Staphylococcus Aureus FabI Inhibitors by Machine Learning Techniques;Research Anthology on Machine Learning Techniques, Methods, and Applications;2022-05-13

4. Identification of Novel Influenza Polymerase PB2 Inhibitors Using a Cascade Docking Virtual Screening Approach;Molecules;2020-11-13

5. Classification of Staphylococcus Aureus FabI Inhibitors by Machine Learning Techniques;International Journal of Quantitative Structure-Property Relationships;2019-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3