Prediction of Soybean Price Trend via a Synthesis Method With Multistage Model

Author:

Xu Zhiling1,Deng Hualing1,Wu Qiufeng1ORCID

Affiliation:

1. Northeast Agricultural University, Harbin, China

Abstract

Soybean is an important crop, so it is very important to forecast soybean price trend, which can stabilize the market. This paper presents a Synthesis Method with Multistage Model (SMwMM) in order to identify and forecast soybean price trend in China. In the previous work,Toeplitz Inverse Covariance-based Clustering(TICC) has been applied to cluster the prices of four variables. The research have found that there are four patterns in soybean market price, which could be explained by economic theory. This paper consider four patterns as market risk levels. Based on the clustering results, we used Long short-term memory(LSTM) to forecast the prices of these four variables. Multivariate long short-term memory(MLSTM) is then used to classify soybean price to determine level of risk . Experimental results show that :(1)The LSTM model has achieved great fitting effect and high prediction accuracy;(2) The performance of MLSTM-FCN and MALSTM-FCN is better than that of LSTM-FCN and ALSTM-FCN. Furthermore,MALSTM-FCN had the higher accuracy than MLSTM-FCN, which reached 76.39%.

Publisher

IGI Global

Subject

Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3