Systematic Design Principles for Cost-Effective Hard Constraint Management in Dynamic Nonlinear Systems

Author:

Munaga Satyakiran1,Catthoor Francky1

Affiliation:

1. IMEC and K. U. Leuven/ESAT, Belgium

Abstract

Modern cost-conscious dynamic systems incorporate knobs that allow run-time trade-offs between system metrics of interest. In these systems regular knob tuning to minimize costs while satisfying hard system constraints is an important aspect. Knob tuning is a combinatorial constrained nonlinear dynamic optimization problem with uncertainties and time-linkage. Hiding uncertainties under worst-case bounds, reacting after the fact, optimizing only the present, and applying static greedy heuristics are widely used problem simplification strategies to keep the design complexity and decision overhead low. Applying any of these will result in highly sub-optimal system realizations in the presence of nonlinearities. The more recently introduced System Scenarios methodology can only handle limited form of dynamics and nonlinearities. Existing predictive optimization approaches are far from optimal as they do not fully exploit the predictability of the system at hand. To bridge this gap, the authors propose the combined strategy of dynamic bounding and proactive system conditioning for the predicted likely future. This paper describes systematic principles to design low-overhead controllers for cost-effective hard constraint management. When applied to fine-grain performance scaling mode assignment problem in a video decoder design, proposed concepts resulted in more than 2x energy gains compared to state-of-the-art techniques.

Publisher

IGI Global

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multitimescale Mitigation for Performance Variability Improvement in Time-Critical Systems;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2022-11

2. Proactive Run-Time Mitigation for Time-Critical Applications Using Dynamic Scenario Methodology;2022 Design, Automation & Test in Europe Conference & Exhibition (DATE);2022-03-14

3. Antifragility = Elasticity + Resilience + Machine Learning Models and Algorithms for Open System Fidelity;Procedia Computer Science;2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3