Improving Customer Value Index and Consumption Forecasts Using a Weighted RFM Model and Machine Learning Algorithms

Author:

Wu Zongxiao1,Zang Cong2,Wu Chia-Huei3,Deng Zilin1,Shao Xuefeng4,Liu Wei5

Affiliation:

1. Southwestern University of Finance and Economics, Chengdu, China

2. Southeast University, Nanjing, China

3. Institute of Service Industries and Management, Minghsin University of Science Technology, Hsinchu, Taiwan

4. Newcastle Business School, The University of Newcastle, Callaghan, Australia

5. Business School, Qingdao University, Qingdao, China

Abstract

Collecting and mining customer consumption data are crucial to assess customer value and predict customer consumption behaviors. This paper proposes a new procedure, based on an improved Random Forest Model by: adding a new indicator, joining the RFMS-based method to a K-means algorithm with the Entropy Weight Method applied in computing the customer value index, classifying customers to different categories, and then constructing a consumption forecasting model whose RMSE is the smallest in all kinds of data mining models. The results show that identifying customers by this improved RMF model and customer value index facilitates customer profiling, and forecasting customer consumption enables the development of more precise marketing strategies.

Publisher

IGI Global

Subject

Information Systems and Management,Management Science and Operations Research,Strategy and Management,Computer Science Applications,Business and International Management

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3