Hypertension Prediction Using Machine Learning Technique

Author:

Choi Youngkeun1,Choi Jae2

Affiliation:

1. Sangmyung University, South Korea

2. University of Texas at Dallas, USA

Abstract

Machine learning technology is used in advanced data analysis and optimization approaches for different kinds of medical problems. Hypertension is complicated, and every year it causes a lot of many severe illnesses such as stroke and heart disease. This study essentially had two primary goals. Firstly, this paper intends to understand the role of variables in hypertension modeling better. Secondly, the study seeks to evaluate the predictive performance of the decision trees. Based on these results, first, age, BMI, and average glucose level influence hypertension significantly, while other variables have an influence. Second, for the full model, the accuracy rate is 0.905, which implies that the error rate is 0.095. Among the patients who were predicted not to have hypertension, the accuracy that would not have hypertension was 90.51%, and the accuracy that had strike was 30.77% among the patients who were predicted to have hypertension.

Publisher

IGI Global

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3