Affiliation:
1. Huazhong University of Science and Technology, Wuhan, China
Abstract
MapReduce is a widely adopted computing framework for data-intensive applications running on clusters. This paper proposed an approach to exploit data parallelisms in XML processing using MapReduce in Hadoop. The authors' solution seamlessly integrates data storage, labeling, indexing, and parallel queries to process a massive amount of XML data. Specifically, the authors introduce an SDN labeling algorithm and a distributed hierarchical index using DHTs. More importantly, an advanced two-phase MapReduce solution are designed that is able to efficiently address the issues of labeling, indexing, and query processing on big XML data. The experimental results show the efficiency and effectiveness of the proposed parallel XML data approach using Hadoop.
Subject
Computer Networks and Communications
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献