Adapting Reproducible Research Capabilities to Resilient Distributed Calculations

Author:

Rodríguez-Pascual Manuel1,Kanellopoulos Christos2,Rubio-Montero Antonio Juan1,Darriba Diego3,Prnjat Ognjen2,Posada David4,Mayo-García Rafael1

Affiliation:

1. CIEMAT, Madrid, Spain

2. GRNET, Athens, Greece

3. Universidade da Coruña, A Coruña, Spain

4. Universidade de Vigo, Vigo, Spain

Abstract

Nowadays, computing calculations are becoming more and more demanding due to the huge pool of resources available. This demand must be satisfied in terms of computational efficiency and resilience, which is compromised in distributed and heterogeneous platforms. Not only this, data obtained are often either reused by other researchers or recalculated. In this work, a set of tools to overcome the problem of creating and executing fault tolerant distributed applications on dynamic environments is presented. Such a set also ensures the reproducibility of the performed experiments providing a portable, unattended and resilient framework that encapsulates the infrastructure-dependent operations away from the application developers and users, allowing performing experiments based on Open Access data repositories. In this way, users can seamlessly search and lately access datasets that can be automatically retrieved as input data into a code already integrated in the proposed workflow. Such a search is based on metadata standards and relies on Persistent Identifiers (PID) to assign specific repositories. The applications profit from Distributed Toolbox, a framework devoted to the creation and execution of distributed applications and includes tools for unattended cluster and grid execution, where a total fault tolerance is provided. By decoupling the definition of the remote tasks from its execution and control, the development, execution and maintenance of distributed applications is significantly simplified with respect to previous solutions, increasing their robustness and allowing running them on different computational platforms with little effort. The integration with Open Access databases and employment of PIDs for long-lasting references ensures that the data related to the experiments will persist, closing a complete research circle of data access/processing/storage/dissemination of results.

Publisher

IGI Global

Subject

Computer Networks and Communications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3