Energy Aware Cluster Head Selection for Maximizing Lifetime Improvement in Internet of Things

Author:

Maddikunta Praveen Kumar Reddy1,Madda Rajasekhara Babu2

Affiliation:

1. School of Information Technology, VIT University, Vellore, India

2. School of Computing Science and Engineering, VIT University, Vellore, India

Abstract

Energy efficiency is a major concern in Internet of Things (IoT) networks as the IoT devices are battery operated devices. One of the traditional approaches to improve the energy efficiency is through clustering. The authors propose a hybrid method of Gravitational Search Algorithm (GSA) and Artificial Bee Colony (ABC) algorithm to accomplish the efficient cluster head selection. The performance of the hybrid algorithm is evaluated using energy, delay, load, distance, and temperature of the IoT devices. Performance of the proposed method is analyzed by comparing with the conventional methods like Artificial Bee Colony (ABC), Genetic Algorithm (GA), Particle Swarm Optimization (PSO) and GSO algorithms. The performance of the hybrid algorithm is evaluated using of number of alive nodes, convergence estimation, normalized energy, load and temperature. The proposed algorithm exhibits high energy efficiency that improves the life time of IoT nodes. Analysis of the authors' implementation reveals the superior performance of the proposed method.

Publisher

IGI Global

Subject

Computer Networks and Communications

Reference39 articles.

1. A survey of secure mobile Ad Hoc routing protocols

2. The 5th Generation Mobile Wireless Networks-Key Concepts, Network Architecture and Challenges.;A.Agarwal;American Journal of Electrical and Electronic Engineering,2015

3. Autonomic schemes for threat mitigation in Internet of Things

4. Internet of Things and Big Data Technologies for Next Generation Healthcare

5. On the interplay of Internet of Things and Cloud Computing: A systematic mapping study

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3