Affiliation:
1. Counties Manukau District Health Board (CMDHB), New Zealand
2. Auckland University of Technology, New Zealand
Abstract
It is essential to increase the accuracy and robustness of classification of brain data, including EEG, in order to facilitate a direct communication between the human brain and computerized devices. Different machine learning approaches, such as support vector machine (SVM), neural network, and linear discrimination analysis (LDA), have been applied to set up automatic subjective-classifier, and the findings for their capacities in this regard have been inconclusive. The present study developed an effective classifier for human mental status using deep learning in a convolutional neural network. In contrast to most previous studies commonly using EEG waveform or numeric value of brain signals for classification, the authors utilised imaging features generated from EEG data at alpha frequency band. A new model proposed in this study provides a simple and computationally efficient approach to distinguish mental status during resting. With training, this model could predict new 2D EEG images with above 90% accuracy, while traditional machine learning techniques failed to achieve this accuracy.
Subject
General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献