An Efficient Random Valued Impulse Noise Suppression Technique Using Artificial Neural Network and Non-Local Mean Filter

Author:

Jena Bibekananda1,Patel Punyaban2,Sinha G.R.3

Affiliation:

1. Anil Neerukonda Institute of Technology & Sciences, Visakhapatnam, India

2. Malla Reddy Institute of Technology, Secunderabad, India

3. CMR Technical Campus, Secunderabad, India

Abstract

A new technique for suppression of Random valued impulse noise from the contaminated digital image using Back Propagation Neural Network is proposed in this paper. The algorithms consist of two stages i.e. Detection of Impulse noise and Filtering of identified noisy pixels. To classify between noisy and non-noisy element present in the image a feed-forward neural network has been trained with well-known back propagation algorithm in the first stage. To make the detection method more accurate, Emphasis has been given on selection of proper input and generation of training patterns. The corrupted pixels are undergoing non-local mean filtering employed in the second stage. The effectiveness of the proposed technique is evaluated using well known standard digital images at different level of impulse noise. Experiments show that the method proposed here has excellent impulse noise suppression capability.

Publisher

IGI Global

Subject

General Medicine

Reference35 articles.

1. A new efficient approach for the removal of impulse noise from highly corrupted images

2. Akkoul, S., Ledee, R., Leconge, R., & Harba, R. (2009). A new detector for switching median filter. In Proceedings of the 6th International Symposium on Image and Signal Processing and Analysis.

3. Chanda, B., & Majumder, D. Dutta. (2002). Digital Image Processing and Analysis (1st ed.). Prentice-Hall of India.

4. Particle swarm optimization trained neural network for structural failure prediction of multistoried RC buildings.;S.Chatterjee;Neural Computing & Applications,2016

5. Chen, T., & Wu, H.R. (2001). Adaptive impulse detection using center-weighted median filters. IEEE Signal Processing Letters, 8(1).

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3