Script-Independent Text Segmentation from Document Images
Author:
Affiliation:
1. Indian Institute of Information Technology, Nagpur, India
2. Visvesvaraya National Institute of Technology, Nagpur, India
Abstract
Document image analysis finds broad application in the digital world for the purpose of information retrieval. This includes optical character recognition (OCR), indexing of digital libraries, web image processing, etc. One of the important steps in this field is text segmentation. This segmentation becomes complicated for the documents containing text of uneven spacing and characters of varying font sizes. In this paper, script-independent text-line segmentation and word segmentation algorithms are presented. Fast marching method is used for text-line segmentation, whereas wavelet transform with connected components (CCs) labeling is used for word segmentation. Fast marching method is used as a region growing process that detects potential text-lines. For word segmentation, energy map is calculated using wavelet transform to create text-blocks. Both the proposed algorithms are evaluated on different databases containing documents of different scripts, where highest text-line and word segmentation accuracies of 98.9% and 99.1%, respectively, are obtained.
Publisher
IGI Global
Subject
Software
Reference44 articles.
1. A new scheme for unconstrained handwritten text-line segmentation
2. An efficient segmentation technique for Devanagari offline handwritten scripts using the Feedforward Neural Network
3. Text line segmentation in handwritten documents using Mumford–Shah model
4. Fast anisotropic gauss filtering
Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Script independent text segmentation of document images using graph network based shortest path scheme;International Journal of Information Technology;2023-03-25
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3