Improving Weighted Multiple Linear Regression Algorithm for Radiolocation Estimation in LoRaWAN

Author:

Nwawelu Udora N.1,Ahaneku Mamilus A.1,Ezurike Benjamin O.2

Affiliation:

1. University of Nigeria, Nsukka, Nigeria

2. Alex Ekwueme Federal University, Ndufu-Alike, Nigeria

Abstract

In location based services, Weighted Multiple Linear Regression (WMLR) algorithm is used for radio device position estimation. Nevertheless, WMLR provides coarse location estimate, because weights apportioned to the received signal strength (RSS) for each hearable base station during matrix weight formation are not properly distributed. In an attempt to address the problem articulated above, an improved WMLR that enhanced the accuracy of radio device position estimate is proposed in this work. Min-Max scaling was used to determine the weight for each RSS values logged at different BS, as such forming a refined matrix weight. Public on-site outdoor Long Range Wide Area Network (LoRaWAN) RSS data set was used to assess the improved WMLR estimation algorithm on the basis of accuracy. The location accuracy of the proposed method is validated with the existing WMLR algorithm and Federal Communication Commission (FCC) maximum location error benchmark. Results show that the location accuracy of the improved approach outperformed that of the existing WMLR localization method.

Publisher

IGI Global

Subject

General Mathematics

Reference18 articles.

1. Aernouts, M., Berkvens, R., Van V. K., & Weyn, M. (2020). Sigfox and LoRaWAN Datasets for Fingerprint Localization in Large Urban and Rural Areas. MDPI Data, 1 - 15.

2. A hybrid adaptive approach to improve position tracking measurements

3. Evolution of Indoor Positioning Technologies: A Survey

4. Providing Universal Location Services using a Wireless E911 Location Network.;J. J.Bussgang;IEEE Communications Magazine,1998

5. Overview of radiolocation in CDMA cellular systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3