Software Vulnerability Prediction Using Grey Wolf-Optimized Random Forest on the Unbalanced Data Sets

Author:

Rhmann Wasiur1

Affiliation:

1. Department of Computer Science and Engineering, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India

Abstract

Any vulnerability in the software creates a software security threat and helps hackers to gain unauthorized access to resources. Vulnerability prediction models help software engineers to effectively allocate their resources to find any vulnerable class in the software, before its delivery to customers. Vulnerable classes must be carefully reviewed by security experts and tested to identify potential threats that may arise in the future. In the present work, a novel technique based on Grey wolf algorithm and Random forest is proposed for software vulnerability prediction. Grey wolf technique is a metaheuristic technique and it is used to select the best subset of features. The proposed technique is compared with other machine learning techniques. Experiments were performed on three datasets available publicly. It was observed that our proposed technique (GW-RF) outperformed all other techniques for software vulnerability prediction.

Publisher

IGI Global

Subject

Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability

Reference35 articles.

1. An empirical investigation of security vulnerabilities within web applications.;I.Abunadi;Journal of Universal Computer Science,2016

2. Fault-proneness of open source systems: An empirical analysis;M.Alenezi;International Arab Conference on Information Technology,2014

3. Evaluating Software Metrics as Predictors of Software Vulnerabilities

4. Empirical analysis of search based algorithms to identify change prone classes of open source software

5. A PSO-based model to increase the accuracy of software development effort estimation

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3