Dynamic Combined Economic Emission Dispatch Including Wind Generators by Real Coded Genetic Algorithm
Abstract
With the growing environmental depletion, the shift in the focus towards minimizing the emissions of gases released in the conventional generators and further incorporation of a cleaner alternate renewable source of energy such as wind or solar to the existing system is of utmost importance. The research paper aims to build an environmentally resilient electric power system. Real coded genetic algorithm- powerful optimization technique is employed to solve the dynamic combined economic emission dispatch i.e. DCEED strategy for two proposed algorithm. The first proposed DCEED algorithm includes fuel cost of only conventional generators while in the second algorithm along with conventional generators, wind powered generators with varying power output characteristic is added. A comparative analysis of both the algorithms in terms of total combined cost, emission level and fuel cost is taken into account and it is observed that in spite of wind uncertainty the proposed method is more economical.
Subject
Decision Sciences (miscellaneous),Computational Mathematics,Computational Theory and Mathematics,Control and Optimization,Computer Science Applications,Modeling and Simulation,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献