Architecture for Symbolic Object Warehouse

Author:

González Císaro Sandra Elizabeth1

Affiliation:

1. Universidad Nacional del Centro de la Provincia de Buenos Aires, Argentina

Abstract

Much information stored in current databases is not always present at necessary different levels of detail or granularity for Decision-Making Processes (DMP). Some organizations have implemented the use of central database - Data Warehouse (DW) - where information performs analysis tasks. This fact depends on the Information Systems (IS) maturity, the type of informational requirements or necessities the organizational structure and business own characteristic. A further important point is the intrinsic structure of complex data; nowadays it is very common to work with complex data, due to syntactic or semantic aspects and the processing type (Darmont et al., 2006). Therefore, we must design systems, which can to maintain data complexity to improve the DMP. OLAP systems solve the problem of present different aggregation levels and visualization for multidimensional data through cube’s paradigm. The classical data analysis techniques (factorial analysis, regression, dispersion, etc.) are applied to individuals (tuples or individuals in transactional databases). The classic analysis objects are not expressive enough to represent tuples, which contain distributions, logic rules, multivaluate attributes, and intervals. Also, they must be able to respect their internal variation and taxonomy maintaining the dualism between individual and class. Consequently, we need a new data type holding these characteristics. This is just the mathematical concept model introduced by Diday called Symbolic Object (SO). SO allows modeling physic entities or real world concepts. The former are the tuples stored in transactional databases and the latter are high entities obtained from expert’s analysis, automatic classification or some particular aggregation taken from analysis units (Bock & Diday, 2000). The SO concept helps construct the DW and it is an important development for Data Mining (DM): for the manipulation and analysis of aggregated information (Nigro & González Císaro, 2005). According to Calvanese, data integration is a central problem in the design of DWs and Decision Support Systems (Calvanese, 2003; Cali, et al., 2003); we make the architecture for Symbolic Object Warehouse construction with integrative goal. Also, it combines with Data Analysis tasks or DM. This paper is presented as follows: First, Background: DW concepts are introduced. Second, Main Focus divided into: SOs Basic Concepts, Construing SOs and Architecture. Third, Future Trends, Conclusions, References and Key Terms.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3