Distributed Data Mining

Author:

Tsoumakas Grigorios1

Affiliation:

1. Aristotle University of Thessaloniki, Greece

Abstract

The continuous developments in information and communication technology have recently led to the appearance of distributed computing environments, which comprise several, and different sources of large volumes of data and several computing units. The most prominent example of a distributed environment is the Internet, where increasingly more databases and data streams appear that deal with several areas, such as meteorology, oceanography, economy and others. In addition the Internet constitutes the communication medium for geographically distributed information systems, as for example the earth observing system of NASA (eos. gsfc.nasa.gov). Other examples of distributed environments that have been developed in the last few years are sensor networks for process monitoring and grids where a large number of computing and storage units are interconnected over a high-speed network. The application of the classical knowledge discovery process in distributed environments requires the collection of distributed data in a data warehouse for central processing. However, this is usually either ineffective or infeasible for the following reasons: (1) Storage cost. It is obvious that the requirements of a central storage system are enormous. A classical example concerns data from the astronomy science, and especially images from earth and space telescopes. The size of such databases is reaching the scale of exabytes (1018 bytes) and is increasing at a high pace. The central storage of the data of all telescopes of the planet would require a huge data warehouse of enormous cost. (2) Communication cost. The transfer of huge data volumes over network might take extremely much time and also require an unbearable financial cost. Even a small volume of data might create problems in wireless network environments with limited bandwidth. Note also that communication may be a continuous overhead, as distributed databases are not always constant and unchangeable. On the contrary, it is common to have databases that are frequently updated with new data or data streams that constantly record information (e.g remote sensing, sports statistics, etc.). (3) Computational cost. The computational cost of mining a central data warehouse is much bigger than the sum of the cost of analyzing smaller parts of the data that could also be done in parallel. In a grid, for example, it is easier to gather the data at a central location. However, a distributed mining approach would make a better exploitation of the available resources. (4) Private and sensitive data. There are many popular data mining applications that deal with sensitive data, such as people’s medical and financial records. The central collection of such data is not desirable as it puts their privacy into risk. In certain cases (e.g. banking, telecommunication) the data might belong to different, perhaps competing, organizations that want to exchange knowledge without the exchange of raw private data. This article is concerned with Distributed Data Mining algorithms, methods and systems that deal with the above issues in order to discover knowledge from distributed data in an effective and efficient way.

Publisher

IGI Global

Reference28 articles.

1. Parallel mining of association rules

2. Agrawal, R., & Srikant, R. (1994, September). Fast Algorithms for Mining Association Rules. In Proceedings of the 20th International Conference on Very Large Databases (VLDB’94), Santiago, Chile, 487-499.

3. Ashrafi, M. Z., Taniar, D. & Smith, K. (2004). ODAM: An Optimized Distributed Association Rule Mining Algorithm. IEEE Distributed Systems Online, 5(3).

4. The knowledge grid

5. Chan, P., & Stolfo, S. (1993). Toward parallel and distributed learning by meta-learning. In Proceedings of AAAI Workshop on Knowledge Discovery in Databases, 227-240.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parallel and distributed clustering framework for big spatial data mining;International Journal of Parallel, Emergent and Distributed Systems;2018-03-16

2. Data mining in distributed environment: a survey;WIREs Data Mining and Knowledge Discovery;2017-07-18

3. Multi-agent distributed data mining approach for classifying meteorology data: case study on Iran’s synoptic weather stations;International Journal of Environmental Science and Technology;2017-05-15

4. A multi-agent system with reinforcement learning agents for biomedical text mining;Proceedings of the 6th ACM Conference on Bioinformatics, Computational Biology and Health Informatics;2015-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3