Mining Smart Card Data from an Urban Transit Network

Author:

Agard Bruno1

Affiliation:

1. École Polytechnique de Montréal, Canada

Abstract

In large urban areas, smooth running public transit networks are key to viable development. Currently, economic and environmental issues are fueling the need for these networks to adequately serve travel demand, thereby increasing their competitiveness and their market share. Better balance between transit supply and demand will also help reduce and control operating costs. The fact is, however, that transit operators are finding it extremely difficult to adjust the service to meet the demand, because this demand changes continuously with the time or day of travel (period of the day, day of the week, season or holiday) and other factors like weather and service breakdown. In order to enhance their service, operators need to better understand the travel demand (customer behaviors and the variability of the demand in space and time). This can be achieved only by continuously monitoring the day-to-day activities of users throughout the transit network. Some large cities around the world take advantage of smart card capabilities to manage their transit networks by using Smart Card Automated Fare Collection Systems (SCAFCS). An SCAFCS gives travelers greater flexibility, since a single card may be used by one user at various times and on different parts of the transit network, and may support various fare possibilities (by travel, line, zone, period, etc.). For transit operators, these systems not only validate and collect fares, but also represent a rich source of continuous data regarding the use of their network. Actually, this continuous dataset (developed for fare collection) has the potential to provide new knowledge about transit use. Following the application of various pretreatments which make it possible to extract real-time activity, data mining techniques can reveal interesting patterns. These techniques are aimed at precisely describing customer behavior, identifying sets of customers with similar behaviors, and measuring the spatial and temporal variability of transit use. Patterns are extracted and analyzed to document various issues, such as identifying transit use cycles or homogeneous days and weeks of travel for various periods of the year. This information is required for a better understanding and modeling of customer behavior, and consequently better adjustment of the service to the demand. These adjustments may, for instance, lead to the restructuring of the transit network, to the adaptation of route scheduling or to the definition of new and different subscription options (fares). Below, results from various experiments conducted with a real dataset are provided. They show the potential of data mining to provide useful and novel information about user behavior on a transit network. The data processed in the study are extracted from a system operating in a Canadian city (Gatineau, Quebec).

Publisher

IGI Global

Reference20 articles.

1. Agard, B., Morency, C., & Trépanier, M. (2006) Mining public transport user behaviour from smart card data, 12th IFAC Symposium on Information Control Problems in Manufacturing – INCOM 2006, Saint-Etienne, France, May 17–19.

2. The potential of public transport smart card data

3. Deriving the Constancy of Traffic Flow Composition from Vehicle Registration Data;P.Bonsall;Traffic Engineering and Control,1984

4. Cheung, F. (2006) Implementation of Nationwide Public Transport Smart Card in the Netherlands, Transportation Research Record, no. 1971, 127-132.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Identifying spatio-temporal patterns of bus bunching in urban networks;Journal of Intelligent Transportation Systems;2020-02-06

2. Alighting stop determination using two-step algorithms in bus transit systems;Transportmetrica A: Transport Science;2019-05-14

3. Public transport trip purpose inference using smart card fare data;Transportation Research Part C: Emerging Technologies;2018-02

4. A visual segmentation method for temporal smart card data;Transportmetrica A: Transport Science;2017-01-17

5. Understanding Travel Behavior of the Special Populations Using Smart Card Data: A Case Study of Suzhou, China;CICTP 2014;2014-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3