Vertical Data Mining on Very Large Data Sets

Author:

Perrizo William1,Ding Qiang2,Ding Qin3,Abidin Taufik1

Affiliation:

1. North Dakota State University, USA

2. Chinatelecom Americas, USA

3. East Carolina University, USA

Abstract

Due to the rapid growth of the volume of data that are available, it is of importance and challenge to develop scalable methodologies and frameworks that can be used to perform efficient and effective data mining on large data sets. Vertical data mining strategy aims at addressing the scalability issues by organizing data in vertical layouts and conducting logical operations on vertical partitioned data instead of scanning the entire database horizontally in order to perform various data mining tasks.

Publisher

IGI Global

Reference28 articles.

1. On searching transposed files

2. Chan, C. Y., & Ioannidis, Y. (1998). Bitmap Index Design and Evaluation. Proceedings of ACM SIGMOD International Conference on Management of Data, 355-366.

3. Copeland, G., & Khoshafian, S. (1985). Decomposition Storage Model. Proceedings of ACM SIGMOD International Conference on Management of Data, 268-279.

4. Denton, A., Ding, Q., Perrizo, W., & Ding, Q. (2002). Efficient Hierarchical Clustering of Large Data Sets Using P-Trees. Proceeding of International Conference on Computer Applications in Industry and Engineering, 138-141.

5. Ding, Q. (2004). Multi-Relational Data Mining Using Vertical Database Technology. Ph.D. Thesis, North Dakota State University.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3