Affiliation:
1. Arizona State University, USA
Abstract
As John Muir noted, “When we try to pick out anything by itself, we find it hitched to everything else in the Universe” (Muir, 1911). In tune with Muir’s elegantly stated notion, research in molecular biology is progressing toward a systems level approach, with a goal of modeling biological systems at the molecular level. To achieve such a lofty goal, the analysis of multiple datasets is required to form a clearer picture of entire biological systems (Figure 1). Traditional molecular biology studies focus on a specific process in a complex biological system. The availability of high-throughput technologies allows us to sample tens of thousands of features of biological samples at the molecular level. Even so, these are limited to one particular view of a biological system governed by complex relationships and feedback mechanisms on a variety of levels. Integrated analysis of varied biological datasets from the genetic, translational, and protein levels promises more accurate and comprehensive results, which help discover concepts that cannot be found through separate, independent analyses. With this article, we attempt to provide a comprehensive review of the existing body of research in this domain.