Affiliation:
1. Concordia University, Canada
2. Simon Fraser University, Canada
Abstract
Document clustering is an automatic grouping of text documents into clusters so that documents within a cluster have high similarity in comparison to one another, but are dissimilar to documents in other clusters. Unlike document classification (Wang, Zhou, & He, 2001), no labeled documents are provided in clustering; hence, clustering is also known as unsupervised learning. Hierarchical document clustering organizes clusters into a tree or a hierarchy that facilitates browsing. The parent-child relationship among the nodes in the tree can be viewed as a topic-subtopic relationship in a subject hierarchy such as the Yahoo! directory. This chapter discusses several special challenges in hierarchical document clustering: high dimensionality, high volume of data, ease of browsing, and meaningful cluster labels. State-of-the-art document clustering algorithms are reviewed: the partitioning method (Steinbach, Karypis, & Kumar, 2000), agglomerative and divisive hierarchical clustering (Kaufman & Rousseeuw, 1990), and frequent itemset-based hierarchical clustering (Fung, Wang, & Ester, 2003). The last one, which was developed by the authors, is further elaborated since it has been specially designed to address the hierarchical document clustering problem.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献