Storage Systems for Data Warehousing

Author:

Thomasian Alexander1

Affiliation:

1. New Jersey Institute of Technology - NJIT, USA

Abstract

Data storage requirements have consistently increased over time. According to the latest WinterCorp survey (http://www/WinterCorp.com), “The size of the world’s largest databases has tripled every two years since 2001.” With database size in excess of 1 terabyte, there is a clear need for storage systems that are both cost effective and highly reliable. Historically, large databases are implemented on mainframe systems. These systems are large and expensive to purchase and maintain. In recent years, large data warehouse applications are being deployed on Linux and Windows hosts, as replacements for the existing mainframe systems. These systems are significantly less expensive to purchase while requiring less resources to run and maintain. With large databases it is less feasible, and less cost effective, to use tapes for backup and restore. The time required to copy terabytes of data from a database to a serial medium (streaming tape) is measured in hours, which would significantly degrade performance and decreases availability. Alternatives to serial backup include local replication, mirroring, or geoplexing of data. The increasing demands of larger databases must be met by less expensive disk storage systems, which are yet highly reliable and less susceptible to data loss. This article is organized into five sections. The first section provides background information that serves to introduce the concepts of disk arrays. The following three sections detail the concepts used to build complex storage systems. The focus of these sections is to detail: (i) Redundant Arrays of Independent Disks (RAID) arrays; (ii) multilevel RAID (MRAID); (iii) concurrency control and storage transactions. The conclusion contains a brief survey of modular storage prototypes.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leasing as a Risk-Sharing Mechanism;SSRN Electronic Journal;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3