Meta-Learning

Author:

Giraud-Carrier Christophe1,Brazdil Pavel2,Soares Carlos2,Vilalta Ricardo3

Affiliation:

1. Brigham Young University, USA

2. University of Porto, Portugal

3. University of Houston, USA

Abstract

The application of Machine Learning (ML) and Data Mining (DM) tools to classification and regression tasks has become a standard, not only in research but also in administrative agencies, commerce and industry (e.g., finance, medicine, engineering). Unfortunately, due in part to the number of available techniques and the overall complexity of the process, users facing a new data mining task must generally either resort to trialand- error or consultation of experts. Clearly, neither solution is completely satisfactory for the non-expert end-users who wish to access the technology more directly and cost-effectively. What is needed is an informed search process to reduce the amount of experimentation with different techniques while avoiding the pitfalls of local optima that may result from low quality models. Informed search requires meta-knowledge, that is, knowledge about the performance of those techniques. Metalearning provides a robust, automatic mechanism for building such meta-knowledge. One of the underlying goals of meta-learning is to understand the interaction between the mechanism of learning and the concrete contexts in which that mechanism is applicable. Metalearning differs from base-level learning in the scope of adaptation. Whereas learning at the base-level focuses on accumulating experience on a specific learning task (e.g., credit rating, medical diagnosis, mine-rock discrimination, fraud detection, etc.), learning at the meta-level is concerned with accumulating experience on the performance of multiple applications of a learning system. The meta-knowledge induced by meta-learning provides the means to inform decisions about the precise conditions under which a given algorithm, or sequence of algorithms, is better than others for a given task. While Data Mining software packages (e.g., SAS Enterprise Miner, SPSS Clementine, Insightful Miner, PolyAnalyst, KnowledgeStudio, Weka, Yale, Xelopes) provide user-friendly access to rich collections of algorithms, they generally offer no real decision support to non-expert end-users. Similarly, tools with emphasis on advanced visualization help users understand the data (e.g., to select adequate transformations) and the models (e.g., to tweak parameters, compare results, and focus on specific parts of the model), but treat algorithm selection as a post-processing activity driven by the users rather than the system. Data mining practitioners need systems that guide them by producing explicit advice automatically. This chapter shows how meta-learning can be leveraged to provide such advice in the context of algorithm selection.

Publisher

IGI Global

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ensembles of label noise filters: a ranking approach;Data Mining and Knowledge Discovery;2016-07-13

2. Noise detection in the meta-learning level;Neurocomputing;2016-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3