Tools for Automatic Audio Management

Author:

Helén Marko1,Lahti Tommi2,Klapuri Anssi1

Affiliation:

1. Tampere University of Technology, Finland

2. Nokia Research Center, Finland

Abstract

The purpose of this chapter is to introduce tools for automatic audio management. The authors present applications which are already available for the users and describe the algorithms and methods behind these applications and their performance. They also discuss the concept of metadata, which is an important prerequisite for modern distributed personal content applications. The variety of automatic audio management tools is wide-ranging. This chapter covers audio segmentation and classification, query by example of audio, music retrieval and recommendation, and speech management, which they consider as being the most important aspects of audio information management. Computational complexity is one major concern in the present era of personal mobile devices and large multimedia collections available on the internet. Therefore they also introduce clustering and indexing techniques which are developed for faster access in large databases.

Publisher

IGI Global

Reference59 articles.

1. Aaltonen, A. T. (2007). Facilitating personal content management in smart phones. PhD thesis, Proefschrift Rijksuniversiteit Groningen.

2. Barry, D., Coyle, E., & Lawlor, B. (2004). Real-time sound source separation using Azimuth discrimination and resynthesis. 117th Audio Engineering Society Convention. San Francisco, CA, USA.

3. Bartsch, M. A., & Wakefield, G. H. (2001). To catch a chorus: using chroma-based representations for audiothumbnailing. IEEE Workshop on Applications of Signal Processing to Audio and Acoustics, (pp. 15-18). New Platz, NY, USA.

4. Berenzweig, A., Ellis, D. P., & Lawrence, S. (2003). Anchor space for classification and similarity measurement of music. IEEE International Conference on Multimedia and Expo (ICME 2003), 2, pp. 29-32. Baltimore, Maryland, USA.

5. Berenzweig, A. L., Ellis, D. P., & Lawrence, S. (2002). Using voice segments to improve artist classification of music. AES 22nd International Conference on Virtual, Synthetic, and Entertainment Audio. Espoo, Finland.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3