Issues and Techniques to Mitigate the Performance Gap in Content-Based Image Retrieval Systems

Author:

Traina Agma J. M.1,Traina Caetano1,Cordeiro Robson1,Ribeiro Marcela2,Azevedo-Marques Paulo M.3

Affiliation:

1. University of São Paulo (USP) at São Carlos, Brazil

2. Federal University of Sao Carlos, Brazil

3. University of São Paulo (USP) at Ribeirão Preto, Brazil

Abstract

This chapter discusses key aspects concerning the performance of Content-based Image Retrieval (CBIR) systems. The so-called performance gap plays an important role regarding the acceptability of CBIR systems by the users. It provides a timely answer to the actual demand for computational support from CBIR systems that provide similarity queries processing. Focusing on the performance gap, this chapter explains and discusses the main problems currently under investigation: the use of many features to represent images, the lack of appropriate indexing structures to retrieve images and features, deficient query plans employed to execute similarity queries, and the poor quality of results obtained by the CBIR system. We discuss how to overcome these problems, introducing techniques such as how to employ feature selection techniques to beat the “dimensionality curse” and how to use proper access methods to support fast and effective indexing and retrieval of images, stressing the importance of using query optimization approaches.

Publisher

IGI Global

Reference89 articles.

1. Redefining clustering for high-dimensional applications

2. Almeida, J., Valle, E., Torres, R., & Leite, N. (2010). DAHC-tree: An effective index for approximate search in high-dimensional metric spaces. Journal of Information and Data Management - JIDM, 1(3), 375-390.

3. Balan, A. G. R., Traina, A. J. M., Traina, C., Jr., & Marques, P. M. A. (2005). Fractal analysis of image textures for indexing and retrieval by content. Paper presented at the 18th IEEE Intl. Symposium on Computer-Based Medical Systems - CBMS, Dublin, Ireland.

4. Querying multimedia data by similarity in relational DBMS;M. C. N.Barioni;Advanced database query systems: Techniques, applications and technologies,2010

5. Barioni, M. C. N., Razente, H. L., Traina, A. J. M., & Traina, C., Jr. (2006). SIREN: A similarity retrieval engine for complex data. Paper presented at the Demo section of the 32nd Intl Conference on Very Large Data Bases (VLDB 06), Seoul, South Korea.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3