Content Based Image Retrieval Using Active-Nets

Author:

García Pérez David1,Mosquera Antonio1,Berretti Stefano2,Del Bimbo Alberto2

Affiliation:

1. University of Santiago de Compostela, Spain

2. University of Firenze, Italy

Abstract

Content-based image retrieval has been an active research area in past years. Many different solutions have been proposed to improve performance of retrieval, but the large part of these works have focused on sub-parts of the retrieval problem, providing targeted solutions only for individual aspects (i.e., feature extraction, similarity measures, indexing, etc). In this chapter, we first shortly review some of the main practiced solutions for content-based image retrieval evidencing some of the main issues. Then, we propose an original approach for the extraction of relevant image objects and their matching for retrieval applications, and present a complete image retrieval system which uses this approach (including similarity measures and image indexing). In particular, image objects are represented by a two-dimensional deformable structure, referred to as “active net.” Active net is capable of adapting to relevant image regions according to chromatic and edge information. Extension of the active nets has been defined, which permits the nets to break themselves, thus increasing their capability to adapt to objects with complex topological structure. The resulting representation allows a joint description of color, shape, and structural information of extracted objects. A similarity measure between active nets has also been defined and used to combine the retrieval with an efficient indexing structure. The proposed system has been experimented on two large and publicly available objects databases, namely, the ETH-80 and the ALOI.

Publisher

IGI Global

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Artificial Intelligence;Handbook of Research on Manufacturing Process Modeling and Optimization Strategies;2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3