Genetic Algorithms in Multimodal Search Space

Author:

Gestal Marcos1,Dorado Julián1

Affiliation:

1. University of A Coruña, Spain

Abstract

Genetic algorithms (GAs) (Holland, 1975; Goldberg, 1989) try to find the solution for a problem using an initial group of individuals?the population?where each one represents a potential solution. Actually they are successfully applied in very different and actual fields (Yang, Shan, & Bui, 2008; Yu, Davis, Baydar, & Roy, 2008); nevertheless, GAs have some restrictions on a search space with more than a global solution or a unique global solution, together with multiple local optima. A classical GA faced with such a situation tends to focus the search on the surroundings of the global solution; however, it would be interesting to know a higher number of possible solutions for several reasons: precise information about the search space, easy implementation of the local solutions compared with the global one, simple interpretation of certain solutions compared with others, and so forth. To achieve that knowledge, an iterative process will be executed until reaching the desired goals. Such process will start with the grouping of the individuals into species that will independently search a solution in their environments; following, the crossover operation will involve individuals from different species in order not to leave unexplored any search space area. The process will be repeated according to the goals achieved.

Publisher

IGI Global

Reference21 articles.

1. Method for location of clusters of patterns to initialise a learning machine

2. An overview of genetic algorithms: Part 1, fundamentals.;D.Beasley;University Computing,1993

3. Cavicchio, D. J. (1970). Adaptative search using simulated evolution. PhD Thesis, University of Michigan, USA.

4. Clerc, M. (2004). Discrete particle swarm optimization. In B.V. Babu & G.C. Onwubolu (Eds.), New optimization techniques in engineering (pp. 219-239). Berlin: Springer-Verlag.

5. Darwin, C. (1959). On the origin of species by means of natural selection. London: John Murray.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3