Network Worms

Author:

Chen Thomas M.1,Tally Greg W.2

Affiliation:

1. Southern Methodist University, USA

2. SPARTA Inc., USA

Abstract

Internet users are currently plagued by an assortment of malicious software (malware). The Internet provides not only connectivity for network services such as e-mail and Web browsing, but also an environment for the spread of malware between computers. Users can be affected even if their computers are not vulnerable to malware. For example, fast-spreading worms can cause widespread congestion that will bring down network services. Worms and viruses are both common types of self-replicating malware but differ in their method of replication (Grimes, 2001; Harley, Slade, & Gattiker, 2001; Szor, 2005). A computer virus depends on hijacking control of another (host) program to attach a copy of its virus code to more files or programs. When the newly infected program is executed, the virus code is also executed. In contrast, a worm is a standalone program that does not depend on other programs (Nazario, 2004). It replicates by searching for vulnerable targets through the network, and attempts to transfer a copy of itself. Worms are dependent on the network environment to spread. Over the years, the Internet has become a fertile environment for worms to thrive. The constant exposure of computer users to worm threats from the Internet is a major concern. Another concern is the possible rate of infection. Because worms are automated programs, they can spread without any human action. The fastest time needed to infect a majority of Internet users is a matter of speculation, but some worry that a new worm outbreak could spread through the Internet much faster than defenses could detect and block it. The most reliable defenses are based on attack signatures. If a new worm does not have an existing signature, it could have some time to spread unhindered and complete its damage before a signature can be devised for it. Perhaps a greater concern about worms is their role as vehicles for delivery of other malware in their payload. Once a worm has compromised a host victim, it can execute any payload. Historical examples of worms have included: • Trojan horses: Software with a hidden malicious function, for example, to steal confidential data or open a backdoor; • Droppers: Designed to facilitate downloading of other malware; • Bots: Software to listen covertly for and execute remote commands, for example, to send spam or carry out a distributed denial of service (DDoS) attack. These types of malware are not able to spread by themselves, and therefore take advantage of the self-replication characteristic of worms to spread. This article presents a review of the historical development of worms, and an overview of worm anatomy from a functional perspective.

Publisher

IGI Global

Reference18 articles.

1. Digital: The Y2K e-commerce tumble

2. CERT advisory CA-1999-04. (1999). Melissa macro virus. Retrieved December 8, 2007 from http://www.cert.org/advisories/CA-1999-04.html

3. CERT advisory CA-2000-04. (2000). Love letter worm. Retrieved December 8, 2007 from http://www.cert.org/advisories/CA-2000-04.html

4. CERT incident note IN-2001-02. (2001). Open mail relays used to deliver Hybris worm. Retrieved December 8, 2007 from http://www.cert.org/incident_notes/IN-2001-02.html

5. Foster, J., Osipov, V., & Bhalla, N. (2005). Buffer overflow attacks. Rockland, MA: Syngress Publishing.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3