Database Support for M-Commerce and L-Commerce

Author:

Leong Hong Va1

Affiliation:

1. The Hong Kong Polytechnic University, Hong Kong

Abstract

M-commerce (mobile commerce) applications have evolved out of e-commerce (electronic commerce) applications, riding on recent advancement in wireless communication technologies. Exploiting the most unique aspect inherent in m-commerce, namely, the mobility of customers, l-commerce (location-dependent m-commerce) applications have played an increasingly important role in the class of m-commerce applications. All e-commerce, m-commerce, and l-commerce applications rely on the provision of information retrieval and processing capability. L-commerce applications further dictate the maintenance of customer and service location information. Various database systems are deployed as the information source and repository for these applications, backed by efficient indexing mechanisms, both on regular data and location-specific data. Bean (2003) gave a good report on supporting Web-based e-commerce with XML, which could be easily extended to m-commerce. An m-commerce framework, based on JINI/XML and a workflow engine, was defined by Shih and Shim (2002). Customers can receive m-commerce services through the use of mobile devices such as pocket PCs, PDAs, or even smart phones. These mobile devices together with their users are often modeled as mobile clients. There are three types of entities central to m-commerce and l-commerce applications: mobile device, wireless communication, and database. In this article, we focus our discussion on mobile-client enabled database servers, often referred to as mobile databases. Mobile databases maintain information for the underlying m-commerce and l-commerce applications in which mobile devices serve as the hardware platform interfacing with customers, connected through wireless communication. Location is a special kind of composite data ranging from a single point, a line, a poly-line, to a shape defining an area or a building. In general, locations are modeled as spatial objects. The location of a static point of interest, such as a shop, is maintained in a database supporting spatial features and operations, often a spatial database (Güting, 1994). The location of a moving object, like a mobile customer, needs to be maintained in a moving object database (Wolfson, Sistla, Xu, Zhou, & Chamberlain, 1999), a database that supports efficient retrieval and update of object locations. To enable l-commerce, both spatial databases and moving object databases need to support location-specific query processing from mobile clients and location updates they generated. The two major types of data access requirements for a mobile database are data dissemination and dedicated data access. Data dissemination is preferred, since it can serve a large client population in utilizing the high bandwidth downlink channel to broadcast information of common interest, such as stock quotations, traffic conditions, or special events. On the other hand, dedicated data access is conveyed through uplink channels with limited bandwidth. To disseminate database items effectively, the selected set of hot database items can be scheduled as a broadcast disk (Acharya, Alonso, Franklin, & Zdonik, 1995). Proper indexes can be built to facilitate access to broadcast database items (Imielinski & Badrinath, 1994). Redundancy can be included in data (Leong & Si, 1995) and index (Tan & Ooi, 1998) to combat the unreliability of wireless communication.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3