Heuristics in Medical Data Mining

Author:

George Susan E.1

Affiliation:

1. University of South Australia, Australia

Abstract

Deriving—or discovering—information from data has come to be known as data mining. Within health care, the knowledge from medical mining has been used in tasks as diverse as patient diagnosis (Brameier et al., 2000; Mani et al., 1999; Cao et al., 1998; Henson et al., 1996), inventory stock control (Bansal et al., 2000), and intelligent interfaces for patient record systems (George at al., 2000). It has also been a tool of medical discovery itself (Steven et al., 1996). Yet, it remains true that medicine is one of the last areas of society to be “automated,” with a relatively recent increase in the volume of electronic data, many paper-based clinical record systems in use, a lack of standardisation (for example, among coding schemes), and still some reluctance among health-care providers to use computer technology. Nevertheless, the rapidly increasing volume of electronic medical data is perhaps one of the domain’s current distinguishing characteristics, as one of the last components of society to be “automated.” Data mining presents many challenges, as “knowledge” is automatically extracted from data sets, especially when data are complex in nature, with many hundreds of variables and relationships among those variables that vary in time, space, or both, often with a measure of uncertainty, as is common within medicine. Cios and Moore (2001) identified a number of unique features of medical data mining, including the use of imaging and need for visualisation techniques, the large amounts of unstructured nature of free text within records, data ownership and the distributed nature of data, the legal implications for medical providers, the privacy and security concerns of patients requiring anonymous data used, where possible, together with the difficulty in making a mathematical characterisation of the domain. Strictly speaking, many ventures within medical data mining are better described as exercises in “machine learning,” where the main issues are, for example, discovering the complexity of relationships among data items, or making predictions in light of uncertainty, rather than “data mining,” in large, possibly distributed, volumes of data that are also highly complex. Large data sets mean not only increased algorithmic complexity but also often the need to employ special-purpose methods to isolate trends and extract “knowledge” from data. However, medical data frequently provide just such a combination of vast (often distributed) complex data sets.

Publisher

IGI Global

Reference17 articles.

1. Bansal, K., Vadhavkar, S., & Gupta, A. (2000). Neural networks based data mining applications for medical inventory problems. Retrieved September 21, 2000, from http://scanner-group.mit.edu/htdocs/DATAMINING/Papers/paper.html

2. Brameier, M., & Banzhaf, W. (2001). A comparison of linear genetic programming and neural networks in medical data mining. IEEE Transactions on Evolutionary Computation, 5(1), 17-26. Retrieved September 22, 2000, from http://ls11-www.cs.uni-dortmund.de/people/banzhaf/ieee_taec.pdf

3. Dynamic decision analysis in medicine: a data-driven approach

4. Cios, K., & Moore. (2001). Medical data mining and knowledge discovery: Overview of key issues. In K. Cios (Ed.), Medical data mining and knowledge discovery. Heidelberg: Springer-Verlag.

5. Genetic algorithm implementation of stack filter design for image restoration

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3