Internet and Multimedia Communications

Author:

Kanellopoulos Dimitris1,Kotsiantis Sotiris1,Pintelas Panayotis1

Affiliation:

1. University of Patras, Greece

Abstract

Multimedia communications involve digital audio and video and impose new quality of service (QoS) requirements on the Internet (Lu, 2000). Different multimedia applications have different QoS requirements. For example, continuous media types such as audio and video require hard or soft bounds on the end-to-end delay, while discrete media such as text and images do not have any strict delay constrains. In addition, video applications require more bandwidth than audio applications. QoS requirements are specified by the following four closely related parameters: (1) bandwidth on demand; (2) low end-to-end delay; (3) low delay variation (or delay jitter); and (4) acceptable error or loss rate without retransmission, as the delay would be intolerable with retransmission. Multimedia applications are classified into the following three categories: • Two-way conversational applications, which are characterized by their stringent requirement on endto- end delay that includes total time taken to capture, digitize, encode/compress audio/video data, transport them from the source to the destination, and decode and display them to the user. • Broadcasting services where the source is live. The main dissimilarity from the conversational applications is that it is one-way communication and it can stand more delay. • On-demand applications (e.g., video on demand) where the user requests some stored items and the server delivers them to the user. In designing and implementing multimedia applications, the characteristics of these application types should be used to provide required QoS, but using network and system resources efficiently. Even though we say that QoS should be guaranteed, the user states the degree of guarantees. Usually, there are three levels of guarantees: • Hard guarantee, where user-specified QoS should be met absolutely. Reserving network and system resources based on the peak-bit rate of a stream achieves hard guarantees. • Soft guarantee, where user-specified QoS is supposed to be met to a certain precise percentage. This is suitable for continuous media, as they usually do not need 100% accuracy in playback. This type of guarantee uses system resources more efficiently. • Best effort, where no guarantee is given and the multimedia application is executed with whatever resources are available. More networks function in this mode. These different types of guarantees may all be needed in a multimedia session established using proper association control protocols such as C_MACSE (Kanellopoulos & Kotsiantis, 2006). Different levels of guarantee are used for different types of traffic and the user determines which type of guarantee to use. Besides, the charging policy is related to the level of guarantee and the most expensive is the hard guarantee, while the best effort is the cheapest. At the source, multimedia data are either captured live or retrieved from storage devices. The transport module accepts these data, packetizes and passed them on to the Internet. At the destination (sink), multimedia data are reassembled and passed to the application for playback of audio/video. Packet processing time differences, network access time differences, and queuing delay difference can cause delay jitter, which has to be removed at the destination before data being played out.

Publisher

IGI Global

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulated Performance of TFRC, DCCP, SCTP, and UDP Protocols Over Wired Networks;International Journal of Interdisciplinary Telecommunications and Networking;2020-10

2. Next Steps in Multimedia Networking;Digital Multimedia;2018

3. Next Steps in Multimedia Networking;Advances in Multimedia and Interactive Technologies;2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3