Content-Based Retrieval Concept

Author:

Chan Yung-Kuan1,Chang Chin-Chen2

Affiliation:

1. National Chung Hsing University, Taiwan, R.O.C.

2. National Chung Cheng University, Taiwan, R.O.C.

Abstract

Because of the demand for efficient management in images, much attention has been paid to image retrieval over the past few years. The text-based image retrieval system is commonly used in traditional search engines (Ratha et al., 1996), where a query is represented by keywords that are usually identified and classified by human beings. Since people have different understandings on a particular image, the consistency is difficult to maintain. When the database is larger, it is arduous to describe and classify the images because most images are complicated and have many different objects. There has been a trend towards developing the content-based retrieval system, which tries to retrieve images directly and automatically based on their visual contents. A similar image retrieval system extracts the content of the query example q and compares it with that of each database image during querying. The answer to this query may be one or more images that are the most similar ones to q. Similarity retrieval can work effectively when the user fails to express queries in a precise way. In this case, it is no longer necessary to retrieve an image extremely similar to the query example. Hence, similarity retrieval has more practical applications than an exact match does.

Publisher

IGI Global

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3